Full Content is available to subscribers

Subscribe/Learn More  >

Analysis of the Equilibrium Approximation in Chemical Ablation of Thermal Protective Systems

[+] Author Affiliations
B. W. Barr, O. A. Ezekoye

University of Texas at Austin, Austin, TX

Paper No. HT2012-58462, pp. 223-234; 12 pages
  • ASME 2012 Heat Transfer Summer Conference collocated with the ASME 2012 Fluids Engineering Division Summer Meeting and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels
  • Volume 2: Heat Transfer Enhancement for Practical Applications; Fire and Combustion; Multi-Phase Systems; Heat Transfer in Electronic Equipment; Low Temperature Heat Transfer; Computational Heat Transfer
  • Rio Grande, Puerto Rico, USA, July 8–12, 2012
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4478-6
  • Copyright © 2012 by ASME


A quasi-steady-state ablation model is used to investigate the behavior of thermochemically ablating systems in equilibrium and nonequilibrium surface thermochemistry regimes. The model is simplified to allow extraction of relevant nondimensional parameters and comparison with existing experimental data on solid carbon combustion. Good agreement is found between model predictions and experimental data, and the data and model are collapsed in terms of the B number and surface Damkohler number. A new formulation for the surface Damkohler number is proposed, and a relationship between the B number and this Damkohler number is derived for the surface equilibrium and nonequilibrium regimes. The Damkohler formulation is applied to the reentry scenario, and the behavior of the B number in this context is explored. Nondimensional parameters governing behavior in the nonequilibrium regime are determined for graphite oxidation, and the results are extrapolated to more complex surface thermochemistry conditions.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In