Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Investigation of Slip Flow and Heat Transfer in Rotating Rectangular Microchannels

[+] Author Affiliations
Pratanu Roy, N. K. Anand, Debjyoti Banerjee

Texas A&M University, College Station, TX

Paper No. HT2012-58507, pp. 1087-1094; 8 pages
  • ASME 2012 Heat Transfer Summer Conference collocated with the ASME 2012 Fluids Engineering Division Summer Meeting and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels
  • Volume 2: Heat Transfer Enhancement for Practical Applications; Fire and Combustion; Multi-Phase Systems; Heat Transfer in Electronic Equipment; Low Temperature Heat Transfer; Computational Heat Transfer
  • Rio Grande, Puerto Rico, USA, July 8–12, 2012
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4478-6
  • Copyright © 2012 by ASME


Investigation of fluid flow and heat transfer in rotating microchannels is important for centrifugal microfluidics, which has emerged as an advanced technique in biomedical applications and chemical separations. The pseudo forces namely the centrifugal force and the Coriolis force arising as a consequence of the rotating reference frame change the flow pattern significantly from the parabolic profile in a non-rotating channel. The convective heat transfer process is also influenced by the secondary flow introduced by the rotational effect. Moreover, if the microchannel wall is hydrophobic, slip flow can occur inside the channel when the conventional no slip boundary condition is no longer valid. In this work, we have numerically investigated the flow and heat transfer inside a straight rotating rectangular microchannel in the slip flow regime. A pressure based finite volume technique in a staggered grid was applied to solve the steady incompressible Navier-Stokes and energy equations. It has been observed that, depending on the rotational velocity, different slip velocities are induced at the channel walls. The average fluid temperature increases with the increase of rotation as convective heat transfer mechanism is increased due to the secondary flow. However, the slip boundary condition has a negligible effect on the temperature profiles.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In