0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Simulation on Gas Turbine Film Cooling of Curved Surface With Backward Injection

[+] Author Affiliations
Shashank Shetty, Xianchang Li, Ganesh Subbuswamy

Lamar University, Beaumont, TX

Paper No. HT2012-58469, pp. 1065-1072; 8 pages
doi:10.1115/HT2012-58469
From:
  • ASME 2012 Heat Transfer Summer Conference collocated with the ASME 2012 Fluids Engineering Division Summer Meeting and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels
  • Volume 2: Heat Transfer Enhancement for Practical Applications; Fire and Combustion; Multi-Phase Systems; Heat Transfer in Electronic Equipment; Low Temperature Heat Transfer; Computational Heat Transfer
  • Rio Grande, Puerto Rico, USA, July 8–12, 2012
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4478-6
  • Copyright © 2012 by ASME

abstract

Due to the unique role of gas turbine engines in power generation and aircraft propulsion, significant effort has been made to improve the gas turbine performance. As a result, the turbine inlet temperature is usually elevated to be higher than the metal melting point. Therefore, effective cooling of gas turbines is a critical task for engines’ efficiency as well as safety and lifetime. Film cooling has been used to cool the turbine blades for many years. The main issues related to film cooling are its poor coverage, aerodynamic loss, and increase of heat transfer coefficient due to strong mixing. To overcome these problems, film cooling with backward injection has been found to produce a more uniform cooling coverage under low pressure and temperature conditions and with simple cylindrical holes. Therefore, the focus of this paper is on the performance of film cooling with backward injection at gas turbine operating conditions. By applying numerical simulation, it is observed that along the centerline on both concave and convex surfaces, the film cooling effectiveness decreases with backward injection. However, cooling along the span is improved, resulting in more uniform cooling.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In