0

Full Content is available to subscribers

Subscribe/Learn More  >

Design of a Compliant Revolute Mechanism for Accurate Dynamic Characterization of Automotive Steering Columns

[+] Author Affiliations
Martin L. Culpepper, Spencer Szczesny

Massachusetts Institute of Technology, Cambridge, MA

Paper No. DETC2004-57608, pp. 1589-1593; 5 pages
doi:10.1115/DETC2004-57608
From:
  • ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 28th Biennial Mechanisms and Robotics Conference, Parts A and B
  • Salt Lake City, Utah, USA, September 28–October 2, 2004
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4695-4 | eISBN: 0-7918-3742-4
  • Copyright © 2004 by ASME

abstract

It is difficult to obtain accurate measurements of the dynamic characteristics exhibited by automotive steering columns. The difficulties are due in-part to the use of lubricated contact bearings which support the column during testing. These bearings introduce damping, hysteresis, non-linear stiffness and clearance/preloaded constraints on the column. These error sources then mask the true dynamic behavior of the column, thereby preventing a better understanding of the relationship between column design, manufacturing tolerances and column vibration. With this paper, we introduce the concept of a revolute compliant mechanism that can be used in place of contact bearings to support steering columns during dynamic tests. These mechanisms do not exhibit the non-linear damping/stiffness and non-repeatable errors found in contact bearings. As a result, they can be used to design equipment that is capable of taking test data which matches theoretical predictions to within 2%. Experimental results obtained with this equipment suggest (more study is needed to confirm this) that manufacturing errors may be responsible for up to 20–30% error in predicting vibration amplitudes of components within the column, but only 2% error in predicting steering wheel vibration amplitude. Understanding this tolerance-response relationship (via this test equipment) is a necessary first step in understanding and eliminating steering wheel nibble vibrations.

Copyright © 2004 by ASME
Topics: Design , Mechanisms

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In