Full Content is available to subscribers

Subscribe/Learn More  >

Kinematics and Workspace Analysis of Protein Based Nano-Motors

[+] Author Affiliations
G. Sharma, C. Mavroidis

Northeastern University, Boston, MA

M. Badescu

Jet Propulsion Laboratory, Pasadena, CA

A. Dubey, T. Sessa, S. M. Tomassone, M. L. Yarmush

Rutgers University, Piscataway, NJ

Paper No. DETC2004-57569, pp. 1447-1456; 10 pages
  • ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 28th Biennial Mechanisms and Robotics Conference, Parts A and B
  • Salt Lake City, Utah, USA, September 28–October 2, 2004
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4695-4 | eISBN: 0-7918-3742-4
  • Copyright © 2004 by ASME


Kinematic and workspace analyses are performed to predict the performance of a new nanoscale biomolecular motor: The Viral Protein Linear (VPL) Motor. The motor is based on a conformational change observed in a family of viral envelope proteins when subjected to a changing pH environment. The conformational change produces a motion of about 10 nm, making the VPL a basic linear actuator, which can be further interfaced with other organic/inorganic nanoscale components such as DNA actuators and carbon nanotubes. This paper presents the principle of operation of the VPL motor and the development of direct and inverse kinematic models for workspace analysis. Preliminary results obtained from the developed computational tools are presented.

Copyright © 2004 by ASME
Topics: Kinematics , Motors , Proteins



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In