Full Content is available to subscribers

Subscribe/Learn More  >

Kinematic Calibration for Redundantly Actuated Parallel Mechanisms: Theory and Application for 2-DOF Mechanism

[+] Author Affiliations
Jay il Jeong

Johns Hopkins University, Baltimore, MD

Dongsoo Kang

University of Michigan, Ann Arbor, MI

Jongwon Kim

Seoul National University, Seoul, Korea

Paper No. DETC2004-57554, pp. 1407-1418; 12 pages
  • ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 28th Biennial Mechanisms and Robotics Conference, Parts A and B
  • Salt Lake City, Utah, USA, September 28–October 2, 2004
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4695-4 | eISBN: 0-7918-3742-4
  • Copyright © 2004 by ASME


We present a new kinematic calibration algorithm for redundantly actuated parallel mechanisms. The calibration algorithm for a non-redundant case does not apply for a redundantly actuated parallel mechanism, because the angle error of the actuating joint varies with position and the geometrical constraint fails to be consistent. Such change of joint angle error comes from constraint torque variation with each kinematic pose. To calibrate a redundant parallel mechanism, one therefore has to consider constraint torque equilibrium and the relationship of constraint torque to torsional deflection, in addition to geometric constraint. In this paper, we develop the calibration algorithm for a redundantly actuated parallel mechanism using these three relationships, and formulate cost functions for an optimization algorithm. As a case study, we executed the calibration of a 2-degree of freedom (DOF) parallel mechanism with three actuators using the developed algorithm. Coordinate values of tool plate were measured using a laser ball bar and the actual kinematic parameters were identified with a new cost function of the optimization algorithm. Experimental results showed that the accuracy of the tool plate improved by 82% after kinematic calibration in a redundant actuation case.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In