0

Full Content is available to subscribers

Subscribe/Learn More  >

Manipulator Task-Based Performance Optimization

[+] Author Affiliations
Chalongrath Pholsiri, Chetan Kapoor, Delbert Tesar

University of Texas at Austin, Austin, TX

Paper No. DETC2004-57447, pp. 1193-1201; 9 pages
doi:10.1115/DETC2004-57447
From:
  • ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 28th Biennial Mechanisms and Robotics Conference, Parts A and B
  • Salt Lake City, Utah, USA, September 28–October 2, 2004
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4695-4 | eISBN: 0-7918-3742-4
  • Copyright © 2004 by ASME

abstract

This research uses new developments in redundancy resolution and real-time capability analysis to improve the ability of an articulated arm to satisfy task constraints. Task constraints are specified using numerical values of position, velocity, force, and accuracy. Inherent in the definition of task constraints is the number of output constraints that the system needs to satisfy. The relationship of this with the input space (degrees of freedom) defines the ability to optimize manipulator performance. This is done through a Task-Based Redundancy Resolution (TBRR) scheme that uses the extra resources to find a solution that avoids system constraints (joint limits, singularities, etc.) and satisfies task constraints. To avoid system constraints, we use well-understood criteria associated with the constraints. For task requirements, the robot capabilities are estimated based on kinematic and dynamic manipulability analyses. We then compare the robot capabilities with the user-specified requirement values. This eliminates a confusing chore of selecting a proper set of performance criteria for a task at hand. The breakthrough of this approach lies in the fact that it continuously evaluates the relationship between task constraints and system resources, and when possible, improves system performance. This makes it equally applicable to redundant and non-redundant systems. The scheme is implemented using an object-oriented operational software framework and its effectiveness is demonstrated in computer simulations of a 10-DOF manipulator.

Copyright © 2004 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In