Full Content is available to subscribers

Subscribe/Learn More  >

A New Measurement Device for Kinematic Calibration of Parallel Manipulators

[+] Author Affiliations
Abdul Rauf, Sung-Gaun Kim, Jeha Ryu

Gwangju Institute of Science and Technology, Gwangju, Korea

Paper No. DETC2004-57375, pp. 935-942; 8 pages
  • ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 28th Biennial Mechanisms and Robotics Conference, Parts A and B
  • Salt Lake City, Utah, USA, September 28–October 2, 2004
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4695-4 | eISBN: 0-7918-3742-4
  • Copyright © 2004 by ASME


Kinematic calibration is a process that estimates the actual values of geometric parameters to minimize the error in absolute positioning. Measuring all the components of Cartesian posture assure identification of all parameters. However, measuring all components, particularly the orientation, can be difficult and expensive. On the other hand, with partial pose measurements, experimental procedure is simpler. However, all parameters may not be identifiable. This paper proposes a new device that can be used to identify all kinematic parameters with partial pose measurements. Study is performed for a 6 DOF (degree-of-freedom) fully parallel Hexa Slide manipulator. The device, however, is general and can be used for other parallel manipulators. The proposed device consists of a link with U joints on both sides and is equipped with a rotary sensor and a biaxial inclinometer. When attached between the base and the mobile platform, the device restricts the end-effector’s motion to 5 DOF and measures two position components and one rotation component of the end-effector. Numerical analyses of the identification Jacobian reveal that all parameters are identifiable. Computer simulations show that the identification is robust for the errors in the initial guess and the measurement noise. Intrinsic inaccuracies of the device can significantly deteriorate the calibration results. A measurement procedure is proposed and cost functions are discussed to prevent propagation of the inaccuracies to the calibration results.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In