0

Full Content is available to subscribers

Subscribe/Learn More  >

Real-Time Direct Position Analysis of Parallel Spherical Wrists by Using Extra Sensor Data

[+] Author Affiliations
R. Vertechy, V. Parenti-Castelli

University of Bologna, Bologna, Italy

Paper No. DETC2004-57340, pp. 875-883; 9 pages
doi:10.1115/DETC2004-57340
From:
  • ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 28th Biennial Mechanisms and Robotics Conference, Parts A and B
  • Salt Lake City, Utah, USA, September 28–October 2, 2004
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4695-4 | eISBN: 0-7918-3742-4
  • Copyright © 2004 by ASME

abstract

The paper presents an algorithm for the real-time evaluation of the actual end-effector orientation (pose) of general parallel spherical wrists. Conceptually, the method relies on the evidence that the pose of a rigid body is defined once the location of at least two linearly independent vectors attached to the body is known. The location of these vectors of the wrist end-effector is determined by the solution of the direct position analysis of some properly chosen kinematic chains (legs) of the manipulator. In order to accomplish this analysis, extra-sensors, which measure suitable non-actuated variables of the chosen legs, need to be placed in addition to the ones normally embedded in the servo motors, i.e. the sensors which measure the actuated variables. From a mathematical point of view, the algorithm is built on the Polar Decomposition of a matrix and has inherent least square features. Thus, together with measurement redundancy, i.e. more sensors (extra-sensors) than the mechanism degrees of freedom, the method also allows minimizing the influence of both round-off and measurement errors on the estimation of the location of the wrist end-effector. The method is general but, in order to prove its effectiveness, without loss of generality it has been customized to the solution of the (3-UPS)S fully parallel wrist architecture. Comparison of the proposed method, in both its general and specialized form, with others from the literature is provided.

Copyright © 2004 by ASME
Topics: Sensors

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In