Full Content is available to subscribers

Subscribe/Learn More  >

A Dual Number Approach to the Kinematic Analysis of Spatial Linkages With Dimensional and Geometric Tolerances

[+] Author Affiliations
Emanuele Cecchini, Ettore Pennestrì, Roberto Stefanelli, Leonardo Vita

University of Rome Tor Vergata, Rome, Italy

Paper No. DETC2004-57324, pp. 841-849; 9 pages
  • ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 28th Biennial Mechanisms and Robotics Conference, Parts A and B
  • Salt Lake City, Utah, USA, September 28–October 2, 2004
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4695-4 | eISBN: 0-7918-3742-4
  • Copyright © 2004 by ASME


Design robustness is somewhat connected to tolerances. In fact, the lower is the sensitivity of the kinematic function to the deviations of manufacturing process, the higher is the robustness of the design. In this investigation is described a tolerance analysis method based on dual vectors kinematic modeling of spatial linkages and on Monte Carlo simulation of the random variables. In the present analysis the hypothesis of rigid bodies is valid and only kinematic variables are considered in output. The method is applied to a Cardan joint modelled as an RCCC linkage with main dimensions considered as stochastic variables with Gaussian distribution. Dual vectors are well known in kinematic analysis and synthesis of spatial mechanisms. When compared with traditional vectorial methods, dual vectors show an enhanced capability to model misalignments among kinematic pairs axes. Although this is not the first time that dual vectors are used for the kinematic and dynamic analysis of spatial mechanisms with manufacturing errors, the present use of dual vectors to model joint clearances seems somewhat novel.

Copyright © 2004 by ASME
Topics: Linkages



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In