0

Full Content is available to subscribers

Subscribe/Learn More  >

Jacobian Derivation of 5-DOF 3R2T Parallel Mechanisms

[+] Author Affiliations
Qinchuan Li, Xudong Hu

Zhejiang Institute of Science and Technology, Hangzhou, Zhejiang, China

Zhen Huang

Yanshan University, Qinhuangdao, Hebei, China

Paper No. DETC2004-57276, pp. 727-731; 5 pages
doi:10.1115/DETC2004-57276
From:
  • ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 28th Biennial Mechanisms and Robotics Conference, Parts A and B
  • Salt Lake City, Utah, USA, September 28–October 2, 2004
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4695-4 | eISBN: 0-7918-3742-4
  • Copyright © 2004 by ASME

abstract

This paper presents a method for the Jacobian derivation of 5-DOF 3R2T PMs (parallel mechanisms), where 3R denotes three rotational DOFs (degrees of freedom) and 2T denotes two translational DOFs. First the mobility analysis of such kind of parallel mechanisms is reviewed briefly. The Jacobian matrix of the single limb kinematic chain is obtained via screw theory, which is a 6 × 5 matrix. Then it is shown that the mobility analysis of such kind of PM is important when simplifying the 6 × 5 matrix into a 5 × 5 Jacobian matrix. After obtaining the 5 × 5 Jacobian matrix for each limb, a 5 × 5 Jacobian matrix for the whole mechanism can be established.

Copyright © 2004 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In