0

Full Content is available to subscribers

Subscribe/Learn More  >

ProtoFold: Part II — A Successive Kineto-Static Compliance Method for Protein Conformation Prediction

[+] Author Affiliations
Kazem Kazerounian, Khalid Latif

University of Connecticut, Storrs, CT

Carlos Alvarado

Polytechnic University of Puerto Rico, Hato Rey, Puerto Rico

Paper No. DETC2004-57247, pp. 669-677; 9 pages
doi:10.1115/DETC2004-57247
From:
  • ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 28th Biennial Mechanisms and Robotics Conference, Parts A and B
  • Salt Lake City, Utah, USA, September 28–October 2, 2004
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4695-4 | eISBN: 0-7918-3742-4
  • Copyright © 2004 by ASME

abstract

This paper presents an efficient and novel computational protein prediction methodology called Kineto-Static Compliance Method. Successive Kineto-Static Fold Compliance is a methodology for predicting a protein molecule’s motion under the effect of an inter-atomic force field without the need for molecular dynamic simulation. Instead, the chain complies under the Kineto-Static effect of the force field in such a manner that each rotatable joint changes by an amount proportional to the effective torque on that joint. This process successively iterates until all of the joint torques have converged to zero. This configuration is equivalent to a stable, globally optimized potential energy state of the system or, in other words, the final conformation of the protein. This methodology is implemented in a computer software package named ProtoFold. In this paper, we have used Protofold to predict the final conformation of a small peptide chain segment, an alpha helix, and the Triponin protein chains from a denatured configuration. The results show that torques in each joint are minimized to values very close to zero, which demonstrates the method’s effectiveness for protein conformation prediction.

Copyright © 2004 by ASME
Topics: Proteins

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In