Full Content is available to subscribers

Subscribe/Learn More  >

A Novel Six Degree-of-Freedom Parallel Manipulator With Three Legs

[+] Author Affiliations
Mohammad Vakil, Hodjat Pendar, Hassan Zohoor

Sharif University of Technology, Tehran, Iran

Paper No. DETC2004-57230, pp. 603-610; 8 pages
  • ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 28th Biennial Mechanisms and Robotics Conference, Parts A and B
  • Salt Lake City, Utah, USA, September 28–October 2, 2004
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4695-4 | eISBN: 0-7918-3742-4
  • Copyright © 2004 by ASME


In this paper, a novel six degrees-of-freedom (6-DOF) parallel manipulator actuated by three base-mounted partial spherical actuators is proposed. The parallel manipulator consists of a base, a moving platform and three connecting legs. Each leg has spherical (S), prismatic (P) and universal (U) joints (SPU) in serial manner. The spherical joints are partially actuated due to the fact that the actuators of each leg are used only to specify its leg’s direction. The inverse and forward pose kinematics as well as the singularity points of the aforementioned mechanism is described in the article. In the inverse pose kinematics, active joint variables could be calculated with no need for the evaluation of passive joint variables. It will be shown that the inverse pose kinematics has sixty-four (64) solutions (64 different configurations exists for the inverse pose problem). In the forward pose kinematics, instead of twelve nonlinear equations derived by equaling the transformation matrices of each leg through Denavit-Hartenberg notation, only three nonlinear equations with less nonlinearity could be solved via numerical method, and therefore the numerical method converges more rapidly to the answer. Finally two different sets of singularity points with different natures are obtained.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In