0

Full Content is available to subscribers

Subscribe/Learn More  >

A New Mobile Robot With a Passive Mechanism and a Stereo Vision System for Hazardous Terrain Exploration

[+] Author Affiliations
Sukjune Yoon, Chun-Kyu Woo, Hyun Do Choi, Soo Hyun Kim, Yoon Keun Kwak

Korea Advanced Institute of Science and Technology, Daejeon, Korea

Sung-Kee Park, Sung-Chul Kang

Korea Institute of Science and Technology, Seoul, Korea

Paper No. DETC2004-57170, pp. 443-449; 7 pages
doi:10.1115/DETC2004-57170
From:
  • ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 28th Biennial Mechanisms and Robotics Conference, Parts A and B
  • Salt Lake City, Utah, USA, September 28–October 2, 2004
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4695-4 | eISBN: 0-7918-3742-4
  • Copyright © 2004 by ASME

abstract

The purpose of this project is to develop a mobile robot for hazardous terrain exploration. The exploration of hazardous terrain requires the development of a passive mechanism adaptable to such terrain and a sensing system for obstacle avoidance, as well as a remote control. We designed a new mobile robot, the Ronahz 6-wheel robot, which uses a passive mechanism that can adapt to hazardous terrains and building stairways without any active control. The suggested passive linkage mechanism consists of a simple four-bar linkage mechanism. In addition, we install a stereo vision system for obstacle avoidance, as well as a remote control. Wide dynamic range CCD cameras are used for outdoor navigation. A stereo vision system commonly requires high computational power. Therefore, we use a new high-speed stereo correspondence algorithm, triangulation, and iterative closest point (ICP) registration to reduce computation time. Disparity maps computed by a newly proposed, high-speed method are sent to the operator by a wireless LAN equipment. At the remote control site, a three-dimensional digital map around a mobile robot is built by ICP registration and reconstruction process, and this three-dimensional map is displayed for the operator. This process allows the operator to sense the environment around the robot and to give commands to the mobile robot when the robot is in a remote site.

Copyright © 2004 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In