Full Content is available to subscribers

Subscribe/Learn More  >

Exact-Gradient Optimization Method for Rigid-Body Guidance Synthesis of Planar Mechanisms

[+] Author Affiliations
Ramon Sancibrian, Pablo Garcia, Fernando Viadero, Alfonso Fernandez

University of Cantabria, Santander, Cantabria, Spain

Paper No. DETC2004-57051, pp. 155-161; 7 pages
  • ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 28th Biennial Mechanisms and Robotics Conference, Parts A and B
  • Salt Lake City, Utah, USA, September 28–October 2, 2004
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 0-7918-4695-4 | eISBN: 0-7918-3742-4
  • Copyright © 2004 by ASME


In this paper an approximate kinematic synthesis method is presented with application to rigid-body guidance in planar multibody systems. The problem of finding the optimal dimensions in linkages with rigid-body guidance constraints has been widely studied. Many techniques have been developed and applied to numerous kinematic chains. However, some problems remain without appropriate solution, such as a large number of required poses or low computational cost. The proposed method uses exact-gradient determination to search for an optimal solution. The modelling of the mechanism uses fully Cartesian coordinates and is formulated by means of algebraic constraint equations. Furthermore, the formulation allows the use of a large number of prescribed poses giving high accuracy in the definition of synthesis conditions. Examples are included to illustrate the new approach to some synthesis specifications.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In