Full Content is available to subscribers

Subscribe/Learn More  >

Human Reliability-Based MC&A Methods for Evaluating the Effectiveness of Protecting Nuclear Material

[+] Author Affiliations
Felicia A. Durán, Gregory D. Wyss

Sandia National Laboratories, Albuquerque, NM

Paper No. ICEM2011-59379, pp. 1323-1330; 8 pages
  • ASME 2011 14th International Conference on Environmental Remediation and Radioactive Waste Management
  • ASME 2011 14th International Conference on Environmental Remediation and Radioactive Waste Management, Parts A and B
  • Reims, France, September 25–29, 2011
  • Conference Sponsors: Nuclear Engineering Division and Environmental Engineering Division
  • ISBN: 978-0-7918-5498-3
  • Copyright © 2011 by ASME


Material control and accountability (MC&A) operations that track and account for critical assets at nuclear facilities provide a key protection approach for defeating insider adversaries. MC&A activities, from monitoring to inventory measurements, provide critical information about target materials and define security elements that are useful against insider threats. However, these activities have been difficult to characterize in ways that are compatible with the path analysis methods that are used to systematically evaluate the effectiveness of a site’s protection system. The path analysis methodology focuses on a systematic, quantitative evaluation of the physical protection component of the system for potential external threats, and often calculates the probability that the physical protection system (PPS) is effective (PE ) in defeating an adversary who uses that attack pathway. In previous work, Dawson and Hester observed that many MC&A activities can be considered a type of sensor system with alarm and assessment capabilities that provide reccurring opportunities for “detecting” the status of critical items. This work has extended that characterization of MC&A activities as probabilistic sensors that are interwoven within each protection layer of the PPS. In addition, MC&A activities have similar characteristics to operator tasks performed in a nuclear power plant (NPP) in that the reliability of these activities depends significantly on human performance. Many of the procedures involve human performance in checking for anomalous conditions. Further characterization of MC&A activities as operational procedures that check the status of critical assets provides a basis for applying human reliability analysis (HRA) models and methods to determine probabilities of detection for MC&A protection elements. This paper will discuss the application of HRA methods used in nuclear power plant probabilistic risk assessments to define detection probabilities and to formulate “timely detection” for MC&A operations. This work has enabled the development of an integrated path analysis methodology in which MC&A operations can be combined with traditional sensor data in the calculation of PPS effectiveness. Explicitly incorporating MC&A operations into the existing evaluation methodology provides the basis for an effectiveness measure for insider threats, and the resulting PE calculations will provide an integrated effectiveness measure that addresses both external and insider threats. The extended path analysis methodology is being further investigated as the basis for including the PPS and MC&A activities in an integrated safeguards and security system for advanced fuel cycle facilities.

Copyright © 2011 by ASME
Topics: Reliability



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In