0

Full Content is available to subscribers

Subscribe/Learn More  >

Alumina Nanoparticle Pre-Coated Tubing Enhancing Subcooled Flow Boiling Critical Heat Flux

[+] Author Affiliations
Bao Truong, Lin-wen Hu, Jacopo Buongiorno, Thomas McKrell

Massachusetts Institute of Technology, Cambridge, MA

Paper No. MNHMT2009-18364, pp. 533-539; 7 pages
doi:10.1115/MNHMT2009-18364
From:
  • ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer
  • ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer, Volume 1
  • Shanghai, China, December 18–21, 2009
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 978-0-7918-4389-5 | eISBN: 978-0-7918-3864-8
  • Copyright © 2009 by ASME

abstract

Nanofluids are engineered colloidal dispersions of nano-sized particle in common base fluids. Previous pool boiling studies have shown that nanofluids can improve critical heat flux (CHF) up to 200% for pool boiling and up to 50% for subcooled flow boiling due to the boiling induced nanoparticle deposition on the heated surface. Motivated by the significant CHF enhancement of nanoparticle deposited surface, this study investigated experimentally the subcooled flow boiling heat transfer of pre-coated test sections in water. Using a separate coating loop, stainless steel test sections were treated via flow boiling of alumina nanofluids at constant heat flux and mass flow rate. The pre-coated test sections were then used in another loop to measure subcooled flow boiling heat transfer coefficient and CHF with water. The CHF values for the pre-coated tubing were found on average to be 28% higher than bare tubing at high mass flux G = 2500 kg/m2 s. However, no enhancement was found at lower mass flux G = 1500 kg/m2 s. The heat transfer coefficients did not differ much between experiments when the bare or coated tubes were used. SEM images of the test sections confirm the presence of a nanoparticle coating layer. The nanoparticle deposition is sporadic and no relationship between the coating pattern and the amount of CHF enhancement is observed.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In