0

Full Content is available to subscribers

Subscribe/Learn More  >

Inhaled Pulmonary Drug Delivery Platform Using Surface Acoustic Wave Atomization

[+] Author Affiliations
Aisha Qi, James R. Friend, Leslie Y. Yeo

Monash University, Clayton, VIC, Australia

Paper No. MNHMT2009-18516, pp. 335-342; 8 pages
doi:10.1115/MNHMT2009-18516
From:
  • ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer
  • ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer, Volume 1
  • Shanghai, China, December 18–21, 2009
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 978-0-7918-4389-5 | eISBN: 978-0-7918-3864-8
  • Copyright © 2009 by ASME

abstract

Atomization has been widely applied in pulmonary drug delivery as a promising technology to transport drug formulations directly to the respiratory tract in the form of inhaled particles or droplets. Because of the targeted treatment, the drug can be delivered directly to the site of inflammation, thus the need for systemic exposure and the possibility of side effects are both reduced. Therefore pulmonary drug delivery has significant advantages over other methods in the treatment of respiratory diseases such as asthma. The most common atomization methods employed in pulmonary drug delivery are jet atomization and ultrasonic atomization. However, the difficulty is in producing monodispersed particles/droplets in a size range of 1–5 micron meter in diameter, necessary for deposition in the targeted lung area or lower respiratory airways, within a controllable fashion. In this paper, we demonstrate surface acoustic wave (SAW) atomization as an efficient technique to generate monodispersed aerosol to produce the required size distribution. The SAW atomizer is made of a 127.86 Y-X rotated single-crystal lithium niobate piezoelectric substrate, which is patterned with chromium-aluminum interdigital transducer (IDT) electrodes via UV lithography. When an alternating electric field is applied onto lithium niobate substrate through the IDT, a SAW, propagating across substrate surface with ten nanometer order amplitudes, is generated. When the SAW meets the liquid which is placed upon substrate, the acoustic energy carried by the wave induces atomization of the working fluid, which contains salbutamol as a model drug. In order to measure the size distribution of the atomized droplets, two methods are used. One is the laser diffraction based Spraytec technique and the other is an in-vitro lung modelthe one stage glass twin impinger. The former revealed that the mean diameter of the aerosol atomized was around 3 um which were confirmed by the lung model that demonstrated that nearly 80% of atomized drug aerosol was deposited in the simulated lung area. Moreover, the SAW atomizer only requires 1–3 W driving power, suggesting that it can be miniaturized for portable consumer use.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In