0

Full Content is available to subscribers

Subscribe/Learn More  >

Plasma Lithography for Probing Cell Mechanoregulation

[+] Author Affiliations
Michael Junkin, Pak Kin Wong

University of Arizona, Tucson, AZ

Paper No. MNHMT2009-18206, pp. 81-84; 4 pages
doi:10.1115/MNHMT2009-18206
From:
  • ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer
  • ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer, Volume 1
  • Shanghai, China, December 18–21, 2009
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 978-0-7918-4389-5 | eISBN: 978-0-7918-3864-8
  • Copyright © 2009 by ASME

abstract

Mechanical and physical cues in the cellular microenvironment are important factors in the regulation of cellular activities, such as proliferation, apoptosis, differentiation, migration and adhesion. For instance, cells are known to respond dynamically to different topographical cues and biophysical structures, such as surface roughness, fiber diameters, and micro/nano scale patterns. Nevertheless, little is known about the fundamental physical mechanisms that govern the cell-substrate interactions and their roles in the regulation of physiological processes. This presents a major hurdle toward the realization of nanoengineered medicine. Herein, we report a plasma lithography technique to elucidate the influences of biophysical cues on different cellular activities. The plasma lithography technique selectively functionalizes polymeric and other biologically relevant surfaces, such as PDMS, glass and polystyrene, at scales ranging from millimeters to hundreds of nanometers. We applied this method to cellular patterning and examined the response of human mammary gland epithelial cells and mouse embryo fibroblasts to patterns of hydrophobic and hydrophilic areas towards the elucidation of the mechanoregulation of cellular processes. The technique enables us to systematically investigate the essential role of physical cues on cell migration, proliferation, and morphology. Collectively, these activities are not only fundamental in cell biology but also essential to the creation of novel tissue engineering constructs and medical implants. This study will shed light on how cells interact with their microenvironment as well as demonstrate a means to exercise control over cellular processes for future nanoengineered medical applications.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In