0

Full Content is available to subscribers

Subscribe/Learn More  >

Flexible Electrode Structures for Thermo-Tunneling Applications

[+] Author Affiliations
Eniko T. Enikov, Carlos Gamez, Shezaan Kanjiyani, Mahdi Ganji, Joshua Gill

University of Arizona, Tucson, AZ

Paper No. IMECE2011-62903, pp. 1657-1663; 7 pages
doi:10.1115/IMECE2011-62903
From:
  • ASME 2011 International Mechanical Engineering Congress and Exposition
  • Volume 4: Energy Systems Analysis, Thermodynamics and Sustainability; Combustion Science and Engineering; Nanoengineering for Energy, Parts A and B
  • Denver, Colorado, USA, November 11–17, 2011
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5490-7
  • Copyright © 2011 by ASME

abstract

Combined thermionic emission and tunneling of hot electrons (thermo-tunneling) has emerged as a potential new solid-state cooling technology. Practical implementation of thermo-tunneling, however, requires the formation of a nanometer-sized gap spanning macroscopically significant surfaces. Thermo-tunneling of hot electrons across a few-nanometer gap has application to vacuum electronics, flat panel displays, and holds great potential in thermo-electric cooling and energy generation. Development of new thermo-tunneling applications requires creation of a stable nanometer gap between two surfaces. This presentation is focused on our effort to investigate the feasibility of creating such gaps using distributed electro-magnetic forces arising in thin-film flexible structures. Early efforts based on rigid electrodes showed that the effective tunneling approaches 400 square-micrometers, which albeit small, could lead to useful practical systems. In this presentation, we report a theoretical and experimental investigation of a thin-electrode system which could lead to further increase on the effective tunneling area. The device under study consists of a thin membrane collector electrode (anode) suspended over the emitting electrode (cathode). The structure is placed in a vacuum enclosure with an externally generated magnetic field perpendicular to the current flow in the membrane. The resulting Lorentz force is then directed upwards, separating the two surfaces. A mathematical model of the steady-state operation of the device is presented along with predictions of the contact area and tunneling current. Essential output parameters of the model include a central contact area measured by its length (delta) and the thermo-tunneling current. Both parameters are determined as a function of the externally applied external potential and magnetic field. Numerical solutions of the model show two possible operating modes: (1) symmetric deformation with negligibly small current; and (2) asymmetric mode where the B-field controls the current and contact area.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In