Full Content is available to subscribers

Subscribe/Learn More  >

Optimization of Positive Pressure Ventiliation Tactic for Wind Driven High Rise Fires

[+] Author Affiliations
Prabodh Panindre, Sunil Kumar, Atulya Narendranath, Vinay Kanive Manjunath, Venkata Pushkar Chintaluri, Vishal Prajapati

Polytechnic Institute of New York University, Brooklyn, NY

Paper No. IMECE2011-62908, pp. 1561-1569; 9 pages
  • ASME 2011 International Mechanical Engineering Congress and Exposition
  • Volume 4: Energy Systems Analysis, Thermodynamics and Sustainability; Combustion Science and Engineering; Nanoengineering for Energy, Parts A and B
  • Denver, Colorado, USA, November 11–17, 2011
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5490-7
  • Copyright © 2011 by ASME


Positive Pressure Ventilation (PPV) is a firefighting tactic that can mitigate the spread of fire and the combustion products to improve the safety of firefighters and civilians in wind-driven high-rise fires than without PPV. The performance of a PPV tactic in wind-driven high-rise fires depends on various parameters that include wind speed, control of stairwell doors, number of fans, fan positions and placements, fire location etc. This paper describes the influence of these parameters on the efficacy of PPV operation that was studied by simulating wind-driven high-rise fire scenarios using computational fluid dynamics softwares Fluent 12.0 and NIST’s Fire dynamic simulator (FDS 5.0). The results obtained from Fluent and FDS found to be in close agreement with each other and have been used to optimize the PPV operation for better performance.

Copyright © 2011 by ASME
Topics: Pressure , Fire , Optimization , Wind



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In