0

Full Content is available to subscribers

Subscribe/Learn More  >

Development and Performance Evaluation of High Temperature Concrete for Thermal Energy Storage for Solar Power Generation

[+] Author Affiliations
Emerson E. John, W. Micah Hale, R. Panneer Selvam, Bradley Brown

University of Arkansas, Fayetteville, AR

Paper No. IMECE2011-64286, pp. 1207-1213; 7 pages
doi:10.1115/IMECE2011-64286
From:
  • ASME 2011 International Mechanical Engineering Congress and Exposition
  • Volume 4: Energy Systems Analysis, Thermodynamics and Sustainability; Combustion Science and Engineering; Nanoengineering for Energy, Parts A and B
  • Denver, Colorado, USA, November 11–17, 2011
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5490-7
  • Copyright © 2011 by ASME

abstract

This paper proposes concrete bricks as the main energy storage medium to replace aggregates in the thermocline thermal energy storage system. By developing a feasible concrete mixture, the root cause of thermal ratcheting which is the settlement of the aggregates is immediately eliminated. Fourteen concrete mixtures were submerged in molten salt at 585°C for 500 hours and were also subjected to 30 thermal cycles from 300 to 600°C in a heating furnace. The results show that 5 of the 14 mixtures exhibited adequate mechanical properties after being subjected to the thermal cycling testing regimen. All mixtures exhibited an increase in compressive strength after 500 hours of exposure in molten salt at 585°C. This illustrates that concrete as an alternative to the use of quartzite rock and silica sand is feasible.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In