0

Full Content is available to subscribers

Subscribe/Learn More  >

Performance and Reliability Analysis of an Off-Grid Hybrid Power System

[+] Author Affiliations
Zachariah Iverson, Ajit Achuthan, Pier Marzocca, Daryush Aidun

Clarkson University, Potsdam, NY

Ken Caird

GE Energy Services, Atlanta, GA

Paper No. IMECE2011-64197, pp. 1187-1195; 9 pages
doi:10.1115/IMECE2011-64197
From:
  • ASME 2011 International Mechanical Engineering Congress and Exposition
  • Volume 4: Energy Systems Analysis, Thermodynamics and Sustainability; Combustion Science and Engineering; Nanoengineering for Energy, Parts A and B
  • Denver, Colorado, USA, November 11–17, 2011
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5490-7
  • Copyright © 2011 by ASME

abstract

Small villages in remote locations of developing countries rarely have access to electricity and are highly dependent on burning fossil fuels for energy. In an effort to provide these villages with a quality power supply and to replace their current emissions-producing energy generation, we propose a Hybrid Power System (HPS) that uses small wind turbines and solar panels for power generation. The system manages the intermittency of the renewable power by storing excess energy during periods of low user demand (such as night time) and releasing that energy at demand peaks (times when people are using demanding appliances). The proposed storage method uses electrolysis, which is the separation of water molecules into hydrogen and oxygen by excess DC currents produced by the wind and solar. The hydrogen is then compressed and stored in metal hydride tanks and when demand exceeds wind and solar generation, power is provided using a Proton Exchange Membrane Fuel Cell (PEMFC), which is highly responsive in peak demand periods compared to other types of hydrogen fuel cells. A physics-based model of the HPS is constructed in order to improve its efficiency, and statistics-based reliability models are formed to evaluate its potential for loss of load. Efficiency of a HPS can be viewed as balancing the energy production with user consumption. For this purpose, accurate models of the subsystems (wind turbines, solar panels, an electrolyzer using metal hydride tanks for hydrogen storage, fuel cell stack) are created. Realistic models of the AC loads are also required; this includes models of a performance optimized data center (POD) and the power demanded by a small community. As to optimize the energy management of the entire system, a model of a main controller that utilizes closed-loop control systems to maintain power stability is designed. On the reliability side, analysis is performed to assess the system’s response to various failures over time. This work is aimed at examining the reliability of the power system; not the examination of failure data in order to improve the reliability of various components. Models for testing of performance are created on a MATLAB Simulink and SimPowerSystems platform.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In