Full Content is available to subscribers

Subscribe/Learn More  >

Development of an Angularly Oscillating Wave Energy Converter

[+] Author Affiliations
Yingchen Yang, Ruben Reyes, Carlos Gonzalez, Sergio Echevarria

University of Texas at Brownsville, Brownsville, TX

Paper No. IMECE2011-62359, pp. 1135-1142; 8 pages
  • ASME 2011 International Mechanical Engineering Congress and Exposition
  • Volume 4: Energy Systems Analysis, Thermodynamics and Sustainability; Combustion Science and Engineering; Nanoengineering for Energy, Parts A and B
  • Denver, Colorado, USA, November 11–17, 2011
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5490-7
  • Copyright © 2011 by ASME


The averaged power density of ocean waves is about 25 times as high as that of solar or winds. Yet, energy harvesting from ocean waves is far less competitive than that from solar and winds nowadays. The primary hurdle is the high installation/maintenance cost associated with wave energy harvesting devices. The present research focuses on the development of a wave energy converter (WEC) that is expected to have negligibly low cost on installation and maintenance. To achieve this goal, a new working mechanism is applied. The enabled WEC is a surface-floating device. It can be loosely anchored to the seabed through single-point slack mooring; that makes the installation as easy as anchoring a boat. The WEC uses wave-enabled angular oscillation to harvest energy. Such angular oscillation directly turns into nearly the same angular oscillation between the rotor and stator of a specially designed electric generator. The whole system is encapsulated in a rigid and watertight buoy — the hull of the WEC, thus the WEC is corrosion free. Furthermore, the only parts that subject to wear in the entire system are a couple of high-endurance bearings, which may make the WEC maintenance free in its designed lifespan (e.g., 5 years). In this paper, we present and discuss the design and testing of our first prototype WEC. Experimental exploration from hydrodynamic perspective was conducted in a wave tank to improve the shape design of the buoy, which plays a critical role on exciting large angular oscillation of the WEC in waves. Numerical simulation from electromagnetic perspective was carried out to guide the design of the electric generator; the resulted generator is capable of working efficiently in slow angular oscillation mode (e.g., at 1 Hz or lower).

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In