0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Simulation of Thin-Film Photovoltaic Solar Cells

[+] Author Affiliations
Khairy Sayed

Sohag University, Sohag, Egypt

Mazen Abdel-Salam, Mahmoud Ahmed, Adel A. Ahmed

Assiut University, Assiut, Egypt

Paper No. IMECE2011-62352, pp. 1127-1134; 8 pages
doi:10.1115/IMECE2011-62352
From:
  • ASME 2011 International Mechanical Engineering Congress and Exposition
  • Volume 4: Energy Systems Analysis, Thermodynamics and Sustainability; Combustion Science and Engineering; Nanoengineering for Energy, Parts A and B
  • Denver, Colorado, USA, November 11–17, 2011
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5490-7
  • Copyright © 2011 by ASME

abstract

The objective of this work is to develop a detailed numerical simulation of solar photovoltaic cells in one, two, and three-dimensions. Such kind of numerical simulation can be used as a flexible research tool for the design and analysis of solar cells. The developed in-house simulation code has the advantage of conducting modifications of the suggested configurations to include effects not covered by the commercial simulation models. In addition, this tool is to serve as a test-bed simulator for the development of solar cells modeling and to design new material models. The photovoltaic solar cells governing equations are Poisson’s equation, the hole and electron continuity equations. Poisson equation is generally used to get the voltages across the device. However, in the present work, it is used to obtain the value of the electrical charge. The governing equations along with the appropriate boundary conditions are solved numerically using a finite difference based method. The resulting system of coupled nonlinear equations is then solved using Newton method for nonlinear systems. The predicted results include illuminated current-voltage characteristic, and dark current-voltage characteristics of photovoltaic module. Comparisons between predicted results and corresponding measured values by manufacturer are conducted in order to validate the numerical simulation. A good agreement between predicted and measured results was prevailed.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In