0

Full Content is available to subscribers

Subscribe/Learn More  >

Cellular Photosynthetic Rate of Fully and Partially Pigmented Chlamydomonas reinhardtii as a Function of Irradiance

[+] Author Affiliations
Thomas E. Murphy, Halil Berberoğlu

University of Texas, Austin, TX

Paper No. IMECE2011-64550, pp. 203-209; 7 pages
doi:10.1115/IMECE2011-64550
From:
  • ASME 2011 International Mechanical Engineering Congress and Exposition
  • Volume 4: Energy Systems Analysis, Thermodynamics and Sustainability; Combustion Science and Engineering; Nanoengineering for Energy, Parts A and B
  • Denver, Colorado, USA, November 11–17, 2011
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5490-7
  • Copyright © 2011 by ASME

abstract

This paper reports the cellular photosynthetic rates of the green algae Chlamydomonas reinhardtii wild strain and its truncated chlorophyll antenna transformant, tla1 , as a function of local irradiance. It is hypothesized that reduction in the pigmentation of algae cells can enhance light peneration in mass cultures and increase productivity. Thus, an experimental setup was designed to expose each cell within planktonic algae cultures to a nearly uniform irradiance. An oxygen microsensor was used to monitor the photosynthetic rate as the irradiance onto the sample was varied. The results showed that the cellular photosynthetic rate of the wild strain, CC125, was greater than that of tla1 at all irradiances, by a factor that ranged from 1.7 to 4. Photoinhibition was observed in both strains, although the effect was more pronounced in CC125. Although less pigmented cells enable deeper light penetration in photobioreactors, their reduced phosotynthetic rate can negate this benefit.

Copyright © 2011 by ASME
Topics: Microsensors , Oxygen

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In