Full Content is available to subscribers

Subscribe/Learn More  >

Optimal Design of Micro-Turbine Cogeneration Systems for the Portuguese Buildings Sector

[+] Author Affiliations
Luís B. Martins, Ana C. M. Ferreira, Manuel L. Nunes, Celina P. Leão, Senhorinha F. C. F. Teixeira, Francisco Marques, José C. F. Teixeira

University of Minho, Guimarães, Portugal

Paper No. IMECE2011-64470, pp. 179-186; 8 pages
  • ASME 2011 International Mechanical Engineering Congress and Exposition
  • Volume 4: Energy Systems Analysis, Thermodynamics and Sustainability; Combustion Science and Engineering; Nanoengineering for Energy, Parts A and B
  • Denver, Colorado, USA, November 11–17, 2011
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5490-7
  • Copyright © 2011 by ASME


The use of combined heat and power (CHP) systems to produce both electric and thermal energies for medium-size buildings is on the increase, due to their high overall efficiency, high energy prices and political and social awareness. In this paper, an energy-economic study is presented. The main objective is to implement an analysis that will lead to the optimal design of a small cogeneration system, given the thermal power duration curve of a multi-family residential building. A methodology was developed to obtain this curve for a reference B-class building located in the North of Portugal. The CHP unit is based on a micro gas-turbine and includes an Internal Pre-Heater (IPH), typical of these types of small-scale units, and an external Water Heater (WH). A numerical optimization method was applied to solve the thermo-economic model. The mathematical model yields an objective function defined as the maximization of the annual worth of the cogeneration system. A purchase cost equation was used for each major plant component that takes into account size and performance variables. Seven decision variables were selected for the optimization algorithm, including performance of internal gas-turbine components and electrical and thermal powers. The results show that, the revenue from selling electricity to the grid and fuel costs have the greatest impact on the annual worth of the system. The optimal solution for the small CHP is sensitive to fuel price, electricity feed-in-tariff, capital cost and to the thermal load profile of the building. High European energy prices point towards future micro gas-turbines with better electrical efficiencies, achieved via a higher pressure-ratio compressor and turbine inlet temperature.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In