Full Content is available to subscribers

Subscribe/Learn More  >

Analysis of Ultrasonic Machining Using Monte Carlo Simulation

[+] Author Affiliations
Chittaranjan Sahay, Suhash Ghosh, Hari Kiran Kammila

University of Hartford, West Hartford, CT

Paper No. IMECE2011-63240, pp. 881-889; 9 pages
  • ASME 2011 International Mechanical Engineering Congress and Exposition
  • Volume 3: Design and Manufacturing
  • Denver, Colorado, USA, November 11–17, 2011
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5489-1
  • Copyright © 2011 by ASME


Proper selection of manufacturing conditions is one of the most important aspects in Ultrasonic Machining process, as these conditions determine the Material Removal Rate (MRR). In this work, two very popular mathematical models proposed by Miller and Shaw have been investigated using Monte Carlo simulation based Crystal Ball analysis tool. Effects of abrasive particle size, particle concentration, amplitude of tool vibration, tool radius and depth of hole on MRR have been analyzed for both models. Miller’s model indicates a strong positive relationship between abrasive grain size, concentration and MRR. Contrary to the literature search on experimental data, Shaw’s mathematical model indicates a negative relationship between MRR and grain size, and a very weak relationship between MRR and concentration. No definite relationship could be established between either tool radius and MRR or amplitude and MRR. A negative relationship between depth of hole and MRR was obtained for Shaw’s model.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In