Full Content is available to subscribers

Subscribe/Learn More  >

Texture Modification and Ductility Enhancement in Mg Alloy Through Friction Stir Processing

[+] Author Affiliations
Zhenzhen Yu, Zhili Feng

Oak Ridge National Laboratory, Oak Ridge, TN

Hahn Choo

University of Tennessee, Knoxville, TN

Sven Vogel

Los Alamos National Laboratory, Los Alamos, NM

Paper No. IMECE2011-65693, pp. 523-527; 5 pages
  • ASME 2011 International Mechanical Engineering Congress and Exposition
  • Volume 3: Design and Manufacturing
  • Denver, Colorado, USA, November 11–17, 2011
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5489-1
  • Copyright © 2011 by ASME


The effects of friction stir processing (FSP) parameters, i.e., rotation and travel rates of the processing tool, on the texture modification and ductility enhancement of an Mg alloy AZ31B were investigated. With the systematic change in processing parameters as a function of the Zener-Hollomon parameter, a transition of different crystallographic texture was observed through neutron diffraction measurement, which correlated well with the changes in deformation and recrystallization mechanism activated during the processing. The variation in the texture leads to dramatic changes in the strength and ductility in the stir zone of the processed Mg plate. A maximum of three-fold increase in the ductility was achieved in the Mg alloy through FSP when the Zener-Hollomon parameter exceeds 1012 s−1 which is associated with low rotation speed and high travel speed processing conditions.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In