0

Full Content is available to subscribers

Subscribe/Learn More  >

Modeling of Serrated Chip Formation With a Fracture Locus Approach

[+] Author Affiliations
Yalla Abushawashi, Xinran Xiao

Michigan State University, Lansing, MI

V. P. Astakhov

Production Service Management Inc. (PSMi), Saline, MI

Paper No. IMECE2011-63918, pp. 373-384; 12 pages
doi:10.1115/IMECE2011-63918
From:
  • ASME 2011 International Mechanical Engineering Congress and Exposition
  • Volume 3: Design and Manufacturing
  • Denver, Colorado, USA, November 11–17, 2011
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5489-1
  • Copyright © 2011 by ASME

abstract

A fracture model is of great concern when it comes to chip formation and simulation of localized shear bands that take place in serrated chip formation. Considering the special loading characteristics of the cutting regime, the present paper is intended to evaluate the equivalent fracture strain to be used in the prediction of segmented chip formation and energy evaluation. It is assumed that both the equivalent strain rate and stress triaxiality define the material fracture locus. The stress triaxiality analysis was based on the fracture experiments using flat-grooved specimen conducted by Bai et al. [1]. The effect of the strain rate was estimated based on the strain energy density and stress triaxiality. To ensure model completeness and solution stability, damage evolution was modeled based on the material fracture energy. Numerical simulations of machining AISI steel 1045 with and without friction model were performed. The physical and morphological characteristics of the chip formation were analyzed. The results were found to be in agreement with the experimental data of the actual segmented chip obtained from the literature. The anticipated fluctuation of the cutting force caused by the chip segmentation was observed. It is noted that up to 25% reduction of the total energy required by the system may be achieved by minimizing tool friction using tribological coating and/or metal working fluids.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In