0

Full Content is available to subscribers

Subscribe/Learn More  >

The Effect of Cryogenic Cooling on White Layer Formation in Hard Machining

[+] Author Affiliations
D. Umbrello, S. Caruso, F. Crea

University of Calabria, Rende, Italy

S. Yang, O. W. Dillon, Jr., I. S. Jawahir

University of Kentucky, Lexington, KY

Paper No. IMECE2011-65208, pp. 341-348; 8 pages
doi:10.1115/IMECE2011-65208
From:
  • ASME 2011 International Mechanical Engineering Congress and Exposition
  • Volume 3: Design and Manufacturing
  • Denver, Colorado, USA, November 11–17, 2011
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5489-1
  • Copyright © 2011 by ASME

abstract

Microstructural phase transformations, commonly named as the white layer on hard turned components, have in recent times become an interesting research topic in machining. Three main theories have been proposed to justify the mechanisms of white layer formation: (i) rapid heating and quenching; (ii) severe plastic deformation; (iii) surface reaction with the environment. Furthermore, coolant application also affects the surface microstructural alterations resulting from machining operations, which have a significant influence on product performance and life. The present work aims at understanding the effects of cryogenic coolant application on machined surface alterations during orthogonal machining of hardened AISI 52100 bearing steel. Experiments were performed under dry and cryogenic cooling conditions using cubic boron nitride (CBN) tool inserts with varying initial hardness and tool shape. Several experimental techniques were used in order to analyze the machined surface. In particular, optical and scanning electron microscopes (SEM) were used for characterizing the surface topography, whereas the microstructural phase composition analysis and chemical characterization have been performed using X-ray diffraction (XRD) and energy-dispersive spectroscopy (EDS) techniques. The experimental results prove that the microstructural phase changes are partially reduced or can be totally avoided under certain cryogenic cooling conditions. Therefore, cryogenic cooling has the potential to be used for achieving enhanced surface integrity, thus contributing to improved product life and functional performance.

Copyright © 2011 by ASME
Topics: Cooling , Machining

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In