Full Content is available to subscribers

Subscribe/Learn More  >

Ultrasonic-Vibration Assisted Pelleting for Cellulosic Ethanol Manufacturing: An Experimental Investigation of Power Consumption

[+] Author Affiliations
Qi Zhang, Pengfei Zhang, Z. J. Pei, Jonathan Wilson, Leland McKinney, Graham Pritchett

Kansas State University, Manhattan, KS

Paper No. IMECE2011-64307, pp. 295-303; 9 pages
  • ASME 2011 International Mechanical Engineering Congress and Exposition
  • Volume 3: Design and Manufacturing
  • Denver, Colorado, USA, November 11–17, 2011
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5489-1
  • Copyright © 2011 by ASME


Ethanol produced from cellulosic biomass is an alternative to petroleum-based transportation fuels. However, its manufacturing costs are too high for cellulosic ethanol to be competitive. Cellulosic feedstocks have low density, causing their transportation and storage expensive, contributing to high manufacturing costs of cellulosic ethanol. Pelleting can increase the density of cellulosic feedstocks and reduce their transportation and storage costs. Ultrasonic vibration-assisted (UV-A) pelleting is a new pelleting method. Effects of input pelleting parameters (ultrasonic power, pelleting pressure, and particle size) on pellet quality and sugar yield have been studied. However, the effects of these parameters on power consumption in UV-A pelleting have not been studied. Since power consumption directly affects ethanol manufacturing costs, lower power consumption is desirable. The objective of this paper is to study effects of different input parameters (biomass material, particle size, ultrasonic power, and pelleting pressure) of UV-A pelleting on power consumption. Four types of biomass materials (big bluestem, corn stover, sorghum stalk, and wheat straw) were studied. Sorghum stalk consumed the least power. Pelleting pressure, particle size and ultrasonic power significantly affected power consumption of all four materials. Higher ultrasonic power and pelleting pressure resulted in lower power consumption. In addition, this paper also compares power consumption between UV-A pelleting and ring-die pelleting (a traditional pelleting method).

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In