Full Content is available to subscribers

Subscribe/Learn More  >

Automatic Optimization of Casting Feeders Using Feed-Paths Generated by VEM

[+] Author Affiliations
M. Sutaria

Charotar University of Science and Technology, Changa, Anand, GJ, India

D. Joshi

Shri G. S. Institute of Technology and Science, Indore, Indore, MP, India

M. Jagdishwar, B. Ravi

Indian Institute of Technology Bombay, Mumbai, MH, India

Paper No. IMECE2011-65074, pp. 137-146; 10 pages
  • ASME 2011 International Mechanical Engineering Congress and Exposition
  • Volume 3: Design and Manufacturing
  • Denver, Colorado, USA, November 11–17, 2011
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5489-1
  • Copyright © 2011 by ASME


Feeding or risering system of a casting significantly affects the internal quality as well as the yield of a casting. It is however, quite difficult to predict the effect of a particular set of feeder design parameters (such as location, shape and dimensions) on casting quality. Hence feeding system design is iterative in practice, involving tooling modification, foundry trials and inspection. Computer simulation can save material and production resources involved in foundry trials, but requires a higher level of human effort for preparing the inputs and interpreting the results properly. In this work, we have evolved a new approach to evaluate and optimize casting feeding system design using feed-paths. The feed-paths are computed by Vector Element Method (VEM). It is possible to automatically track the direction of the feed metal flow from a given point, and to check if a feeder is effective. The convergence of the feed-paths provides a clear indication of directional solidification and location of shrinkage defects. Further, this takes a fraction of the time taken by FEM-based simulation, making it more useful for practical application. The proposed approach is demonstrated by automatically optimizing the feeder size for a benchmark casting, and validated by pouring and sectioning Al-alloy castings made in sand molds.

Copyright © 2011 by ASME
Topics: Casting , Optimization



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In