0

Full Content is available to subscribers

Subscribe/Learn More  >

Loss Coefficients in Microelbows

[+] Author Affiliations
Tim A. Handy, Evan C. Lemley

University of Central Oklahoma, Edmond, OK

Dimitrios V. Papavassiliou, Henry J. Neeman

University of Oklahoma, Norman, OK

Paper No. FEDSM2009-78517, pp. 501-506; 6 pages
doi:10.1115/FEDSM2009-78517
From:
  • ASME 2009 Fluids Engineering Division Summer Meeting
  • Volume 2: Fora
  • Vail, Colorado, USA, August 2–6, 2009
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4373-4 | eISBN: 978-0-7918-3855-6
  • Copyright © 2009 by ASME

abstract

The goal of this study was to determine laminar pressure loss coefficients for flow in microelbows with circular and trapezoidal cross-sections. Flow conditions and pressure losses in these elbows are of interest in microfluidic devices, in porous media, and in other types of microfluidic networks. The literature focuses almost exclusively on loss coefficients due to turbulent flow in macroelbows with very little data on laminar flow in macroelbows. The pressure loss coefficients determined in this study are intended to aid in realistic simulation of existing laminar flow networks or the design of these networks. This study focused on an elbow of constant cross-section with inlet and outlet tubes of sufficient length so as to allow fully developed laminar flow at the entrance to the elbow and at the outlet tube exit. For the circular elbow, both the ratio of elbow radius to inner diameter and inlet Reynolds number were allowed to vary over the ranges of 0.5—10.5 and 1—2500, respectively. The laminar pressure loss coefficients were determined by simulating incompressible flow over the range of geometries and Reynolds numbers in the commercial CFD software FLUENT. The pressure and velocity distributions in the inlet and outlet tubes were averaged at multiple upstream and downstream positions, and were then used to extrapolate the loss coefficient due to the elbow. The results showed that the loss coefficient for larger ratios tended to be higher, in some cases in excess of 100, at low Reynolds number flows, but as the flow approached the transitional regime, the loss coefficients leveled out to roughly their accepted turbulent values of between 0.4 and 1.0. These results show good qualitative and quantitative agreement with limited laminar elbow experimental data available for macroelbows. For the trapezoidal elbows the loss coefficient levels off to about two for Reynolds numbers greater than 100.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In