0

Full Content is available to subscribers

Subscribe/Learn More  >

Cylindrical Couette Flow of a Rarefied Gas From Macro- to Micro-Scales

[+] Author Affiliations
Sheng Wang, Kangbin Lei, Xilian Luo, Kiwamu Kase

RIKEN Institute, Wako, Saitama, Japan

Elia Merzari, Hisashi Ninokata

Tokyo Institute of Technology, Tokyo, Japan

Paper No. FEDSM2009-78359, pp. 469-475; 7 pages
doi:10.1115/FEDSM2009-78359
From:
  • ASME 2009 Fluids Engineering Division Summer Meeting
  • Volume 2: Fora
  • Vail, Colorado, USA, August 2–6, 2009
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4373-4 | eISBN: 978-0-7918-3855-6
  • Copyright © 2009 by ASME

abstract

The cylindrical Couette flow of a rarefied gas from macro- to micro-scales, in the case where the inner cylinder is rotating whereas the outer cylinder is at rest, is extensively investigated by direct simulation Monte Carlo (DSMC) code incorporated with a Volume-CAD software. The generalized soft sphere (GSS) model is applied to an intermolecular collision calculation. The diffuse reflection model and Cercignani-Lampis-Lord (CLL) model are used to model the molecule-surface interaction by considering the accommodation coefficients on inner cylinder (ACI hereafter) and outer cylinder (ACO hereafter) separately. The contents in this paper include following three aspects: I the flow field characteristics and force and torque on inner cylinder for eccentric Couette flow between different scales with same non-dimensional parameters (accommodation coefficients, eccentricity-clearance ratio, Knudsen number and Reynolds number) are compared; the flow field characteristics for different scales are same; with the increase of the scale, the total force on the inner cylinder increases slightly, while the torque is proportional to the scale; II the velocity profiles in concentric Couette flow under different non-dimensional parameters are studied; the result shows that the phenomenon of inverted velocity profile in the concentric Couette flow is only induced by a smooth outer cylinder; the non-dimensional tangential velocity, as well as its gradient is high at low Reynolds number; the Knudsen number has great impact on the tangential velocity profile, and the velocity profile may not be inverted in the case of low Knudsen number; III the flow field characteristics in eccentric Couette flow under different non-dimensional parameters are obtained; the recirculation zone may not appear when Knudsen number is high; the position of its center may be different depending on Reynolds number; with the increase of Reynolds number, the compressibility effect becomes important; stratified distribution of the density becomes obvious at low Knudsen number.

Copyright © 2009 by ASME
Topics: Flow (Dynamics)

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In