Full Content is available to subscribers

Subscribe/Learn More  >

Update on Progress in Creating Stabilized Gas Layers in Flowing Liquid Mercury

[+] Author Affiliations
Mark Wendel, David Felde, Bernard Reimer

Oak Ridge National Laboratory, Oak Ridge, TN

Ashraf Abdou

OaK Ridge National Laboratory, Oak Ridge, TN

Paper No. FEDSM2009-78233, pp. 343-348; 6 pages
  • ASME 2009 Fluids Engineering Division Summer Meeting
  • Volume 2: Fora
  • Vail, Colorado, USA, August 2–6, 2009
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4373-4 | eISBN: 978-0-7918-3855-6
  • Copyright © 2009 by ASME


The Spallation Neutron Source (SNS) facility in Oak Ridge, Tennessee uses a liquid mercury target that is bombarded with protons to produce a pulsed neutron beam for materials research and development. In order to mitigate expected cavitation damage erosion (CDE) of the containment vessel, a two-phase flow arrangement of the target has been proposed and was earlier proven to be effective in significantly reducing CDE in non-prototypical target bodies. This arrangement involves covering vulnerable surfaces with a protective layer of gas. The difficulty lies in establishing a persistent gas layer that is oriented vertically and holds up to the strong buoyancy force and the turbulent mercury flow. Several new multiphase experiments have been completed at the Oak Ridge National Laboratory toward developing such layers. The gas hold-up is accomplished by machining regular features (grooves or pits) into the wall with dimensions on the order of 1 mm. The thickness of the gas layer varies, and it is currently unknown how thick a layer must be in order to successfully mitigate the damage, although this aspect is also under investigation. The paper includes a description of the various tests, a presentation of high-speed video images of the gas/mercury interaction viewed through a transparent window, and a discussion of how the results can be used to design a new SNS target that might be resistant to cavitation damage erosion.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In