0

Full Content is available to subscribers

Subscribe/Learn More  >

A New Cavitation Model Based on Evaporation and Condensation Theory

[+] Author Affiliations
Gang Chen

Beijing Petroleum, Oil & Lubrication Institute; Tsinghua University, Beijing, China

Shuhong Liu, Yulin Wu, Deming Liu

Tsinghua University, Beijing, China

Guangjun Cao, Suhong Fu, Weihua Zhang

Beijing Petroleum, Oil & Lubrication Institute, Beijing, China

Paper No. FEDSM2009-78180, pp. 335-341; 7 pages
doi:10.1115/FEDSM2009-78180
From:
  • ASME 2009 Fluids Engineering Division Summer Meeting
  • Volume 2: Fora
  • Vail, Colorado, USA, August 2–6, 2009
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4373-4 | eISBN: 978-0-7918-3855-6
  • Copyright © 2009 by ASME

abstract

Cavitation is a phenomenon which occurs where the local pressure falls off under the vapor pressure. Over the past few years, numerical simulation models for cavitation have been developed significantly in order to investigate the mechanism of cavitation. In the paper, A local homogeneous cavitation model based on the theory of evaporation and condensation has been deduced, which is used to describe the phase change between water and vapor. The RNG k–ε turbulence model is used to simulate the turbulent flow and the finite volume method is employed to discrete the governing equations. The effects of surface tension of water, pressure fluctuations and non-condensable gases are included in the mass transfer cavitation model. Also in order to neglect the effects of the quantities such as the bubble number and bubble diameter, which is difficult to measure, the relations between the aerodynamic drag and surface tension forces is used to describe the bubble diameter. In order to evaluate the new cavitation model, the two phase cavitation flows around a NACA0015 hydrofoil at different attack angle and different cavitation number are simulated by the new cavitation model, and compared with references, which showed good agreement with the experiments.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In