Full Content is available to subscribers

Subscribe/Learn More  >

Design of a Propeller Fan Using 3-D Inverse Design Method and CFD for High Efficiency and Low Aerodynamic Noise

[+] Author Affiliations
Hidenobu Okamoto, Akira Goto

Ebara Corporation, Tokyo, Japan

Masato Furukawa

Kyushu University, Fukuoka, Japan

Paper No. FEDSM2009-78454, pp. 165-171; 7 pages
  • ASME 2009 Fluids Engineering Division Summer Meeting
  • Volume 2: Fora
  • Vail, Colorado, USA, August 2–6, 2009
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4373-4 | eISBN: 978-0-7918-3855-6
  • Copyright © 2009 by ASME


Three-Dimensional Inverse Design Method, where the 3-D blade profile is designed for a specified blade loading distribution, has been applied for designing a propeller fan rotor with high efficiency and low noise. A variety of the blade loading distributions (pressure jump across the blade), vortex pattern (forced vortex, free vortex, and compound vortex) and the stacking conditions (sweep angles) were specified and the corresponding 3-D blade configurations were obtained. Among the 22 different designs, 14 propeller fan rotors including the reproduced baseline fan were manufactured by a rapid prototyping based on a selective laser sintering system (SLS) and tested. It was confirmed experimentally that the best design achieved about 5.7 points improvement in the peak total-to-static efficiency and the 2.6dB(A) reduction in aerodynamic noise. The flow mechanisms leading to the higher efficiency and lower aerodynamic noise were discussed based on experiments and the RANS steady flow simulations. Based on these investigations, design guidelines for the inverse design of propeller fan rotors with higher efficiency and lower aerodynamic noise were proposed.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In