Full Content is available to subscribers

Subscribe/Learn More  >

Design of High Efficiency Blowers for Future Aerosol Applications

[+] Author Affiliations
Raman Chadha, Gerald L. Morrison, Andrew R. McFarland

Texas A&M University, College Station, TX

Paper No. FEDSM2009-78234, pp. 121-129; 9 pages
  • ASME 2009 Fluids Engineering Division Summer Meeting
  • Volume 2: Fora
  • Vail, Colorado, USA, August 2–6, 2009
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4373-4 | eISBN: 978-0-7918-3855-6
  • Copyright © 2009 by ASME


High efficiency air blowers to meet future portable aerosol sampling applications were designed, fabricated, and their performance evaluated. A preliminary blower design based on specific speed was selected, modeled in CFD, and the flow field simulated. This preliminary blower size was scaled in planar and axial directions, at different rpm values, to set the Best Efficiency Point (BEP) at a flow rate of 100 L/min (1.67×10−3 m3 /s @ room conditions) and a pressure rise of 1000 Pa (4″ WC). Characteristic curves for static pressure rise versus air flow rate through the impeller were generated. Experimentally measured motor/blower combination efficiency (ηEXP ) for the preliminary design was around 10%. The low value was attributed to the low efficiency of the D.C. motor used (Chadha, 2005). CFD simulations using the κ–ε turbulent model and standard wall function (non-equilibrium wall functions) approach overpredicted the head values. Enhanced wall treatment under-predicted the head rise but provided better agreement with experimental results. The static pressure rise across the final blower is 1021 Pa at the design flow rate of 100 L/min. Efficiency value based on measured static pressure rise value and the electrical energy input to the motor (ηEXP ) is 26.5%, a 160% improvement over the preliminary design.

Copyright © 2009 by ASME
Topics: Aerosols , Design



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In