0

Full Content is available to subscribers

Subscribe/Learn More  >

A New Concept of a Large-Workspace Small-Size Bending Bellow Actuator

[+] Author Affiliations
Alon Wolf, Gábor Kósa

Technion-Israel Institute of Technology, Haifa, Israel

Paper No. ESDA2008-59372, pp. 587-593; 7 pages
doi:10.1115/ESDA2008-59372
From:
  • ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 1: Advanced Energy Systems; Advanced and Digital Manufacturing; Advanced Materials; Aerospace
  • Haifa, Israel, July 7–9, 2008
  • Conference Sponsors: International
  • ISBN: 978-0-7918-4835-7 | eISBN: 0-7918-3827-7
  • Copyright © 2008 by ASME

abstract

Ask a mechanical designer, especially those dealing with robotics, what are the two main limitations when designing a new autonomous small mechanism. The answer will most likely be the need for better small-size actuation devices and better and smaller energy sources. Indeed, these two factors impose most of the constraints to designers, reflected in the size of the device, the forces it can apply, its achievable workspace, and the time duration it can work when not connected to a permanent energy source. Usually these parameters are in conflict with each other, that is, a small motor has somewhat low output torque and power, while a motor that can generate a large amount of torque is usually large in size and consumes a lot of power. Consequently, every mechanism designer is eager to design a small actuator that generates a large amount of torque while it simultaneously consumes a reasonable amount of energy. This report explains our efforts in developing an inflatable actuator having a small size yet can apply relatively large torque where at the same time can cover a large workspace. The inflatable actuator is shaped as a bellow which is composed of two materials with different shear modulus—one has high elasticity and the other low. By applying pressure inside the bellow, each of the materials tends to deform according to Hooke’s law, resulting in the bending effect due to the elongation differences between the two materials which are constrained to deform simultaneously. We describe the mechanical concept of the bellow actuator; we also provide an analytical model for the bellow deformation. Experimental results for verification of the model are also presented.

Copyright © 2008 by ASME
Topics: Actuators

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In