Full Content is available to subscribers

Subscribe/Learn More  >

Numerical and Experimental Studies on Electrical Potential Distribution of Pressure Driven Flow in Parallel Plate Microchannels

[+] Author Affiliations
Fuzhi Lu, Jun Yang, Daniel Y. Kwok

University of Alberta, Edmonton, AB, Canada

Paper No. ICMM2004-2416, pp. 809-815; 7 pages
  • ASME 2004 2nd International Conference on Microchannels and Minichannels
  • ASME 2nd International Conference on Microchannels and Minichannels
  • Rochester, New York, USA, June 17–19, 2004
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4164-2
  • Copyright © 2004 by ASME


A number of papers have been published on the computational approaches to electrokinetic flows. Nearly all of these decoupled approaches rely on the assumption of the Poisson-Boltzmann equation and do not consider the effect of velocity field on the electric double layers. By means of a charge continuity equation, we present here a numerical model for the simulation of pressure driven flow with electrokinetic effects in parallel-plate microchannels. Our approach is similar to that given by van Theemsche et al. [Anal. Chem., 74, 4919 (2002)] except that we assumed liquid conductivity to be constant and allows simulation to be performed in experimental dimension. The numerical simulation requires the solution of the Poisson equation, charge continuity equation and the incompressible Navier-Stokes equations. The simulation is implemented in a finite-volume based Matlab code. To validate the model, we measured the electrical potential downstream along the channel surface. The simulated results were also compared with known analytical solutions and experimental data. Results indicate that the linear potential distribution assumption in the streaming direction is in general not valid, especially when the flow rate is large for the specific channel geometry. The good agreement between numerical simulation and experimental data suggests that the present model can be employed to predict pressure-driven flow in microchannels.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In