Full Content is available to subscribers

Subscribe/Learn More  >

Characterization of Mixing Efficiency in Narrow Channels by Using the Iodide-Iodate Reaction System

[+] Author Affiliations
Giuliana Trippa

University of Newcastle upon Tyne, Newcastle upon Tyne, UK

Roshan J. J. Jachuck

Clarkson University, Potsdam, NY

Paper No. ICMM2004-2413, pp. 789-793; 5 pages
  • ASME 2004 2nd International Conference on Microchannels and Minichannels
  • ASME 2nd International Conference on Microchannels and Minichannels
  • Rochester, New York, USA, June 17–19, 2004
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4164-2
  • Copyright © 2004 by ASME


Microreactors and narrow channel reactors have found an increasing number of applications in the last few years for their enhanced heat and mass transfer properties if compared to traditional process equipment. In this investigation, mixing efficiency in a narrow channel reactor system has been studied by using the iodide-iodate scheme of parallel competing reactions that leads to the formation of iodine. The tested system is constituted by two reactors machined in Perspex. The two channels have identical configuration and a square cross section with diagonal lines of 1·10−3 m and 2·10−3 m respectively. Influence of flow rate on the selectivity towards iodine has been studied for both reactors. This allows the characterization of mixing intensity at varying operating conditions. The results obtained reflect the expected influence of flow rate and channel characteristic dimension on mixing efficiency. This investigation has been carried out on the same reactor system that had been previously used for studying the precipitation of calcium carbonate from solutions of sodium carbonate and calcium nitrate. In fact, a study on mixing efficiency is particularly useful in the case of precipitation reactions as poor mixing can lead to a final product that does not respect marketing requirements in terms of particle size and particle size distribution. The information acquired in the two investigations can constitute the basis for the design of modules based on narrow channel technology for the production of powders and slurries with controlled properties.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In