Full Content is available to subscribers

Subscribe/Learn More  >

Convective Mixing and Its Application to Micro Reactors

[+] Author Affiliations
Michael Engler, Norbert Kockmann, Thomas Kiefer, Peter Woias

Albert-Ludwigs-University Freiburg, Freiburg, Germany

Paper No. ICMM2004-2412, pp. 781-788; 8 pages
  • ASME 2004 2nd International Conference on Microchannels and Minichannels
  • ASME 2nd International Conference on Microchannels and Minichannels
  • Rochester, New York, USA, June 17–19, 2004
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4164-2
  • Copyright © 2004 by ASME


This work shows the application of convective fluid flow caused by flow-induced secondary vortices to fluidic single-phase micro mixers. As an example we used simple static T-shaped micro mixers. The convective flow was observed both by simulations and by experiments and is suitable for enhancing the mixing quality. Concerning micro reactors, it is necessary that the mixing is faster than the chemical reaction to be induced so that the creation of unwanted side products is minimized. The mixing model by Bourne is slightly modified for continuous flow reactors and applied to our mixers. Using this model, timescales for the mixing in our micro mixers are calculated. A first test reaction — the iodide-iodate reaction by Villermaux and Dushman — to check the validity of the timescales is outlined. These overall results will help to achieve a deeper understanding of micro reactors.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In