Full Content is available to subscribers

Subscribe/Learn More  >

Flow Boiling Heat Transfer and Flow Pattern in Rectangular Channel of Mini-Gap

[+] Author Affiliations
Yang Yang

Saga University, Imari, Japan

Yasunobu Fujita

Kyushu University, Fukuoka, Japan

Paper No. ICMM2004-2383, pp. 573-580; 8 pages
  • ASME 2004 2nd International Conference on Microchannels and Minichannels
  • ASME 2nd International Conference on Microchannels and Minichannels
  • Rochester, New York, USA, June 17–19, 2004
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4164-2
  • Copyright © 2004 by ASME


Flow boiling in micro- and mini-channels has attracted much attention in recent years. But the phenomena is such confined channels have not been fully understood and explained. Some conclusions reached by different authors are even contradictory. The present research is trying to study some aspects of flow boiling in mini- and micro-channels. In the present paper boiling heat transfer and two-phase flow patterns in rectangular narrow channels were studied. The gap size of the channel was varied as 2, 1, 0.5 and 0.2 mm with the channel width and length being kept at 20 mm and 100 mm, respectively. In the present mini- and micro-channels, four flow patterns were identified; bubbly, intermittent, wavy and annular flow. They can be also divided into several sub-flow patterns. Flow patterns showed strong channel gap size dependence. Smaller gap size deleted bubbly flow, thus induced simpler flow patterns to shift the annular flow at lower vapor quality. The channels can be divided into two groups depending on the gap size; the larger gap group of 2 and 1 mm, and the smaller gap group of 0.5 and 0.2 mm. The larger gap group showed similar heat transfer behavior as conventional size of tubes. The smaller gap group indicated some peculiar phenomena. Heat transfer coefficient in the smaller gap group was relatively high in the low quality region. Then heat transfer coefficient decreased monotonously with increasing vapor quality. This behavior was considered attributable to the micro-bubble generation in the channel corners and an early partial dryout of thin liquid film. Thus the relationship between heat transfer coefficient and flow pattern should be carefully pursued in micro- and mini-channels to develop heat transfer correlations based on flow patterns.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In