Full Content is available to subscribers

Subscribe/Learn More  >

Validation of a Second-Order Slip Model for Transition-Regime, Gaseous Flows

[+] Author Affiliations
Nicolas G. Hadjiconstantinou

Massachusetts Institute of Technology, Cambridge, MA

Paper No. ICMM2004-2344, pp. 267-271; 5 pages
  • ASME 2004 2nd International Conference on Microchannels and Minichannels
  • ASME 2nd International Conference on Microchannels and Minichannels
  • Rochester, New York, USA, June 17–19, 2004
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4164-2
  • Copyright © 2004 by ASME


We discuss and validate a recently proposed second-order slip model for dilute gas flows. Our discussion focuses on the importance of quantitatively accounting for the effect of Knudsen layers close to the walls. This is important, not only for obtaining an accurate slip model but also for interpreting the results of the latter since in transition-regime flows the Knudsen layers penetrate large parts of the flow. Our extensive validation illustrates the above points by comparing direct Monte Carlo solutions to the slip model predictions for an unsteady flow. Excellent agreement is found between simulation and the slip model predictions up to Kn = 0.4, for both the velocity profile and stress at the wall. This demonstrates that the proposed second-order slip model reliably describes arbitrary flowfields (and related stress fields) in a predictive manner at least up to Kn = 0.4 for both steady and transient problems.

Copyright © 2004 by ASME
Topics: Gas flow



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In