Full Content is available to subscribers

Subscribe/Learn More  >

Hydrodynamic Behaviour and Influence of Channel Wall Roughness and Hydrophobicity in Microchannels

[+] Author Affiliations
G. P. Celata, S. McPhail, G. Zummo

ENEA, Rome, Italy

M. Cumo

University of Rome “La Sapienza”, Rome, Italy

Paper No. ICMM2004-2340, pp. 237-243; 7 pages
  • ASME 2004 2nd International Conference on Microchannels and Minichannels
  • ASME 2nd International Conference on Microchannels and Minichannels
  • Rochester, New York, USA, June 17–19, 2004
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4164-2
  • Copyright © 2004 by ASME


The sometimes contradictory results available for fluid flow in micropipes show that much is yet to be verified in micro fluid dynamics. In this study the influence of channel wall roughness and of channel wall roughness and of channel wall hydrophobicity on adiabatic flow in circular microchannels is investigated, varying in diameter from 70 μm to 326 μm. The hydrodynamic behaviour of water in smooth tubes down to 30 μm inner diameter (ID) is also ascertained. Within the current experimental accuracy it is found that the classical Hagen-Poiseuille law for friction factor vs. Reynolds number is respected for all diameters measured and Re > 300. With degassed water, no effect of slip flow conditions due to hydrophobic channel walls even at 70 μm ID was noted, which might suggest that the slip flow phenomenon is associated with local desorption of dissolved gases on the hydrophobic surface, as reported elsewhere in the literature. For roughened glass channels, an increase in friction factor above 64/Re was observed only at the smallest diameter measured, 126 μm. For all experiments, no anticipated transition to turbulent flow was observed (2000 < Retr < 3000).

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In