Full Content is available to subscribers

Subscribe/Learn More  >

An Experimental Study of Water Flow in Smooth and Rough Rectangular Micro-Channels

[+] Author Affiliations
R. Baviere, F. Ayela

Centre de Recherches sur les Très Basses Températures, Grenoble Cedex, France

S. Le Person, M. Favre-Marinet

Laboratoire des Ecoulements Géophysiques et Industriels, Grenoble Cedex, France

Paper No. ICMM2004-2338, pp. 221-228; 8 pages
  • ASME 2004 2nd International Conference on Microchannels and Minichannels
  • ASME 2nd International Conference on Microchannels and Minichannels
  • Rochester, New York, USA, June 17–19, 2004
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4164-2
  • Copyright © 2004 by ASME


This paper presents experimental results concerning water flow in smooth and rough rectangular micro-channels. It is part of a work intended to test the classical fluid mechanics laws when the characteristic length scale of inner liquid flows falls below 500μm. The method consists in determining experimental friction coefficients as a function of the Reynolds number. This implies simultaneous measurements of pressure drop and flow rates in microstructures. The two experimental apparatus used in this study enabled us to explore a wide range of length scales (7μm to 300μm) and of Reynolds number (0.01 to 8,000). Classical machining technologies were used to make micro-channels of various heights down to a scale of 100μm. Smaller silicon-Pyrex micro-channels were also made by means of silicon-based micro technologies. In these structures, friction coefficients have been measured locally with Cu -Ni strain gauges. For every height tested, both smooth and rough walls were successively used. When compared to macro-scale correlation the results demonstrate that i) In the smooth case, friction is correctly predicted by the Navier-Stokes equations with the classical kinematic boundary conditions, ii) For 200μm high channels, visualizations show transition to turbulence at Reynolds number of about 3,000. The presence of roughness elements did not significantly influence this result and iii) Roughness considerably increases the friction coefficient in the laminar regime. However, the Poiseuille number remains independent of the Reynolds number.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In