Full Content is available to subscribers

Subscribe/Learn More  >

Fluid Transients in a Pipeline With One Open End

[+] Author Affiliations
Robert A. Leishear

Savannah River National Laboratory, Aiken, SC

Paper No. PVP2008-61130, pp. 97-106; 10 pages
  • ASME 2008 Pressure Vessels and Piping Conference
  • Volume 3: Design and Analysis
  • Chicago, Illinois, USA, July 27–31, 2008
  • Conference Sponsors: Pressure Vessels and Piping
  • ISBN: 978-0-7918-4826-5 | eISBN: 0-7918-3828-5
  • Copyright © 2008 by Washington Savannah River Company LLC


Water hammer during multi-phase flow is rather complex, but in some cases an upper limit to the pressure surge magnitude during water hammer can be estimated. In the case considered here, a two mile long pipeline with a single high point was permitted to partially drain. Due to gravitational effects, air bubbles up through the pipe line to its highest point, but the time required for air to reach the top of the pipe is rather long. Consequently, some transients caused by valve operations are affected by air entrapment and some are not. The intent of this research was to investigate the complex interactions between air, water vapor, and liquid during water hammer in a long pipe with one end of the pipe open to atmospheric conditions. To understand the system dynamics, experimental data was obtained from a long pipeline with an open end and also from a short, transparent tube. Transient calculations were performed for valve closures and pump operations as applicable. The limitations of available calculation techniques were considered in detail.

Copyright © 2008 by Washington Savannah River Company LLC



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In