0

Full Content is available to subscribers

Subscribe/Learn More  >

Bend Flexibility Factors of Piping Elbows and Piping Elbows With Trunnion Attachments Using the Boundary Element Method

[+] Author Affiliations
Manuel Martinez, Johane Bracamonte

Central University of Venezuela, Caracas, Venezuela

Marco Gonzalez

Simon Bolivar University, Caracas, Venezuela

Paper No. PVP2009-77799, pp. 25-32; 8 pages
doi:10.1115/PVP2009-77799
From:
  • ASME 2009 Pressure Vessels and Piping Conference
  • Volume 2: Computer Applications/Technology and Bolted Joints
  • Prague, Czech Republic, July 26–30, 2009
  • Conference Sponsors: Pressure Vessels and Piping
  • ISBN: 978-0-7918-4365-9 | eISBN: 978-0-7918-3854-9
  • Copyright © 2009 by ASME

abstract

Flexibility Factor is an important parameter for the design of piping system related to oil, gas and power industry. Elbows give a great flexibility to piping system, but where a trunnion is attached to an elbow in order to support vertical pipe sections, the piping flexibility is affected. Generally, determination of elbow flexibility factors has been performed by engineering codes such as ASME B31.3 or ASME B31.8, or using the Finite Element Method (FEM) and Finite Difference Method (FDM). In this work, bend flexibility factors for 3D models of piping elbows and piping elbows with trunnion attachments using the Boundary Element Method (BEM) are calculated. The BEM is a relatively new numerical method for this kind of analysis, for which only the surface of the problem needs to be discretized into elements reducing the dimensionality of the problem. This paper shows the simulation of 9 elbows with commercially available geometries and 29 geometries of elbows with trunnion attachments, 10 of them using commercial elbow dimensions, with applied in-plane and out-of-plane bending moments. Structured meshes are used for all surfaces, except the contact surface of elbow-trunnion joints, and no welded joints are simulated. The results show smaller values of flexibility factors of elbow and elbow–trunnion attachments in all loading cases if are compared to ASME B31.3 or correlations obtained from other works. The results also indicate that flexibility factor for elbow-trunnion attachment subjected to in-plane bending moment is greater than flexibility factor for out-of plane bending moment. Accuracy of BEM’s results were not good when flexibility characteristic values are lesser than 0.300, which confirm the problems of this numerical method with very thin-walled structures. The method of limit element could be used as tool of alternative analysis for the design of made high-pitched system, when the problem with very thin-walled structures is fixed.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In