0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Investigation and Performance Optimization of an Air-Cooled Steam Condenser Cell Under Ambient Conditions

[+] Author Affiliations
Weifeng He, Yiping Dai

Xi’an Jiaotong University, Xi’an, Shaanxi, China

Qingzhong Ma

Shanxi Electric Power Research Institute, Taiyuan, Shanxi, China

Paper No. GT2011-46030, pp. 2061-2068; 8 pages
doi:10.1115/GT2011-46030
From:
  • ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition
  • Volume 5: Heat Transfer, Parts A and B
  • Vancouver, British Columbia, Canada, June 6–10, 2011
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5465-5
  • Copyright © 2011 by ASME

abstract

Air-cooled steam condensers (ACSCs) are so sensitive to the unpredictable ambient conditions that it is quite necessary to find the mechanism how the ambient conditions get into reaction and reasonable measurements can be employed to improve the performance. The numerical model of an ACSC cell is established in the paper. The influence of the ambient conditions on the performance of the ACSC cell is investigated, and the final stable back pressure (absolute pressure) the ACSC cell operates at is forecasted. Finally, wind wall is equipped to change the flow field around the ACSC cell and the performance is optimized. Aerodynamic characteristic of the ACSC cell is simulated by employing the FAN boundary and porous media model in FLUENT. User Define Function (UDF) based on the actual steam property is loaded to simulate the condensation of the steam in the exchangers. The flow field around the ACSC cell varies with the different wind speeds and directions. As a result, the fan volumetric effectiveness and the exchanger performance both decrease under high wind speed and adverse wind direction. Wind temperature gets into reaction mainly because it changes the cold side temperature of the exchangers. Under high wind temperature, the reduced temperature difference decreases the heat transfer rate between the exhaust steam and the ambient air. The equipped wind wall successfully reduces the hot air recirculation (HAR) although the fan performance is also affected due to the gathering effect between the wind wall and heat exchangers, and the performance of the ACSC cell is significantly improved under the dual effects.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In